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FOREWORD
This interim technical report was prepared by Iowa State University,
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Aerospace Research, United States Air Force. The work reported herein
was accomplished on Task 7071-01, '*Research in Mathematical Statistics

and Probability Theory" of Project 7071, '"Mathematical Techniques of
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ABSTRACT

In Chapter I the definition of constrained sets of plans and the
problems to be considered are given, In Chapter Il a correspondence
between constrained sets of plans and RT x RT square arrays and a
correspondence between constrained sets of plans and resolvable
balanced incomplete block designs are given, These correspondences
led to the enumeration of many constrained designs, In Chapter III
some relationships between the variance of the error sum of squares
under complete randomization and under constrained randomization are
given, In Chapter IV the power of the randomization test under
constrained randomization was considered for nearly linearly, randomly,
and semi-randomly distributed basal yields. The empirical results
exhibit a tendency of the sensitivity of the test for the detection of
treatment differences to increase with decreases in the variance of the

error sum of squares of the constrained sets.
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I. INTRODUCTION

The notion of constrained randomization is due to W. J. Youden (1956),
Suppose that one has RT experimental units on which to apply T treat-
ments, One might, for example, be comparing 3 measuring devices
(T =3 "treatments") by making 2 measurements with each, giving 6
measurements in all, The measurements will be taken in 6 consecu-
tive periods, and one might be concerned about the possibility of drift in
the attribute being measured or in the operators. One would then regard
the 6 periods as experimental units, and choose a pattern of obser-
vation by associating devices to periods at random, subject to the
restriction that each device is used in two periods. Such a way of
proceeding is known as a completely randomized design. With this

(RT):

design some of the T
(R!)

[ = 90] possible plans have a systematic

ordering of the treatments. Note that these occur in sets of T., which
differ only in the labelling of the treatments, With the case T = 3,

R = 2, a possible plan under complete randomization is

Unit 1 2 3 4 5 6

Treatment a a b b c c

where the numbers 1,2,...,6 denote the units and the letters a, b, ¢
denote the treatments. Youden's contribution was the realization that
there exists a subset of the totality of possible plans which has those
properties of the complete set which are commonly regarded as
essential, and does not contain some plans which seem to be undesirable

because they appear to be systematic.



Definition: A subset of plans is an unbiased subset of plans if
(a) the probability that any particular treatment falls
on a particular unit is -,li., and the treatments occur
equally frequently in each plan, and (b) the expec-
tations of the treattment mean square and of the error
mean square over this subset are equal in the absence

of treatment effects.

The above implies that if the experiment were a dummy one, that is,
there were no treatment effects and no error of observation, the mean
square within treatments should equal the mean square between treat-

ments on the average. In this case either would then necessarily be

equal to
, RT ., . RT ,
RT-T F v; =¥’ = RTE®RT-D : ?_1 ty; - ¥;)
- e
i#j

where the Y, (i=1,2,...,RT) are the basal yields of the experimental
units, Therefore the subset of plans is unbiased if all possible
differences between pairs of experimental units are represented in the
sum of squares for error equally frequently over all the plans belonging

to the subset,

Definition: A constrained set of plans is a subset of the totality

of plans which is unbiased.

The problems to be considered in this report are the existence and

properties of constrained sets.



. EXISTENCE OF CONSTRAINED SETS OF PLANS

A, Representation in RT x RT Square Arrays

Consider the RT x RT square array of (RT)? cells (i, j),

(isj = 1525¢4.,RT) where the cell (i,j) is the intersection of the i-th
row and j-th column in the array. Every time a particular treatment
occurs on the i-th and j-th units of some plan, say plan I, we will
place the symbol 1 in the (i, j)-th cell of the RT x RT square array,
The symbol I in the (i, j)-th cell also corresponds to the (yi - }'j)z
component of the error mean square appearing in plan I, Since there
are no differences of the form (yi - yi). the diagonal cells of the square

array never contain any symbols, Also since

1 RT ) RT
z (y,-y)} = = Ay, -v.)2,
ZRTRT-1) o117 RTRT-1) o1 i
i#j i<j

we need only consider the cells (i, j)} for i<j (i.e. the cells above the
main diagonal), Consider, for example, the following constrained set
which is not necessarily a useful one, for 3 treatments a, b and c,

on 9 units:

Plan Unit No.
No. 1 2 3 4 5 6 7 8 9
A a a a b b b c c c
B a b c a b c a b c
C a b c c a b b c a
D a b c b c a c a b




The occurrence of differences between units in the error sums of

squares can be represented by the following array

1 2 3 4 5 6 7 8 9
1 o A A B C D B D C
2 A O A D B C C B D
3 A A o C D B D C B
4 B D C 0] A A B C D
5 C B D A ) A D B C
6 D C B A A 0] C D B
7 B C D B D C 0] A A
8 D B C C B D A 0] A
9 C D B D C B A A 0]

For instance, the differences of units 1 and 2, units 1 and 3, units
2 and 3, etc. occur in the error sum of squares for plan A, Consider-

ation of this representation leads to the following obvious theorem:

Theorem 1:

A necessary and sufficient condition for the existence of a constrained
set of, say, N plans is that we can insert symmetrically the N symbols,
A,B,C,..., N in the off-diagonal cells of the RT x RT array in such a
way that

(a) any symbol occurs once or not at all in any cell,
{b) if a symbol occurs in cells (i,j) and (i,j') it occurs
in cell (j,j"),

and (c) each cell contains the same number of symbols.

4



The number of cells in the upper off-diagonal portion of the RT xRT

square array is 11%1:-1—) . Each plan has (R) T = RTZR-I)
2

differences between units treated alike so that the minimum possible

number of plans belonging to a constrained set is

_ RT(RT-1) 2 _ (RT-1)

N = =% rTr-D) ¥ ®-1) ¥>» (1)

where K is the lowest integer such that N is an integer. It is obvious
then that K is the number of symbols contained in the (i,j)-th cell for
iyj = 1,2,.043RT, i# j, or the number of times the experimental unit
difference (y, - yj‘) for i,j = 1,2,...5RT, i # j, occurs in the set of

plans,

B. Correspondence to Resolvable Balanced Incomplete Block Designs

We now make a correspondence between constrained sets of plans
and resolvable balanced incomplete block designs which we will hence-
forth designate by R,B.I1.B,D,

A balanced incomplete block design with parameters v,b,r,k, and
A is an arrangement of v variéties in b blocks of k units with every
variety occurring in r blocks and every two varieties occurring
together in A blocks. If in addition it is possible to arrange the b
blocks of the balanced incomplete block design into r groups of n
blocks each (b = nr), so that each variety occurs exactly once in each
group of blocks, i.e. each group contains one complete replication of all

the varieties, then the design is a resolvable balanced incomplete block



design (R.B.1I.B.D,).

Let Si (i=1,2,...,N) denote the i-th group of blocks and
Bij (i=1,2,000,N; j=1,2,.0.,T) denote the j-th block belonging to
Si. Let the v varieties belonging to Si correspond to the RT experi-
mental units of the i-th plan belonging to the constrained set. Let the
k(= R) varieties of Bij correspond to the R experimental units on
which treatment j is replicated in the i-th plan belonging to the
constrained set. By this correspondence we have determined that the

parameters of the R,B.I.B.D, are given by

v = RT
b = NT
r = N (2)
k = R
—_— T r{k-1) _ N(R-1)

v-1} - RT-1} °

As an example of this correspondence consider the R.B.I.B,D, with
the parameters v=6, b=15, r =5, k=2, and A= 1 which corresponds
to the constrained set of 5 plans for 3 treatments on 6 experimental

units. A R.B.L.B.D, with these parameters is given by

12 13 14 15 16
35 26 23 24 25
46 45 56 36 34

where the vertical lines separate the groups of blocks., From this

R.B.1.B.D. we obtain the constrained set of plans



Plan Unit No,

No. 1 2 3 4 5 6

1 a a b c b | ¢
11 a b a c c b
jiss a b b a c c
v a | b c b a c
A" a | b c c b a

Thus for the first replicate of the R.B.I,B.D,, the first block contains
treatments 1 and 2, the second block contains treatments 3 and 5, and
the third block contains treatments 4 and 6. The way of making the
correspondence to constrained designs leads to the first plan having the
first treatment (labelled a) being on units 1 and 2, the second treatment
(labelled b) being on units 3 and 5 and the third treatment (labelled c)
being on units 4 and 6. By constructing the RT x RT square array

this set of plans may easily be shown to form a constrained set of plans,

Theorem 2:
A necessary and sufficient condition for the existence of a con-
strained set of N plans for T treatments on RT experimental units is

the existence of a R,B,I,B.,D, with parameters given by equation 2.

One form of the problem of finding a constrained set reduces there-
fore to the problem of finding R.B.1.B,D, with parameters given by
equation 2. A survey of literature is given in Sutter (1962) and the
specific references concerning the construction of R.B.I.B.D.'s are

given at the end of this report.



III. PROPERTIES OF THE ERROR SUM OF SQUARES

A, The Error Sum of Squares under Complete Randomization

In the case of the completely randomized design for T treatments
applied to RT experimental units let 6uk£ be unity if the f-th reali-
zation of treatment k appears on the u-th unit and zero otherwise,

Under additivity the yield on plot u with treatment k is

X ¥ &

X, +tk+(xu-x.),

Yuk

where x, is the basal yield of the u-~th unit, x, is the mean basal
yield, and te is the yield of treatment k on plot u. The observed
value of the f-th realization of treatment k can be expressed in terms

of the set of conceptual values, Yuk? by

n

- kf
Vi = 2_: 6y Yuk
u=1
n
=x.+tk+ = 6?6
u=l u

where e, = (xu - X.). The error sum of squares, denoted by E,S,S.,

is given by

E.S.S. = Z y3, -RzZ y? .
K K L ke

We then find that

E(E.S.S.) = T(R-1)/(RT-1)S,



and

- - 22 _ VR -
V(E.S.S.) = 2(R-1N(T-1)(R*T* - 3RT +3) Szz N 2T(T-1)(R-1) s,
R(RT-1)* (RT-2)(RT-3) (RT-1)RT-2)(RT-3)
, . n no o,
where ‘ S2 = X e and S, = = e’ .
=1 v 4 u=l ¢

B. The Error Sum of Squares under Constrained Randomization

By the definition of constrained sets of plans the expectation of the
error sum of squares under constrained randomization is the same as
the expectation of the error sum of squares under complete
randomization. The Gukf under constrained randomization take on the
same values, i,e, 0 and 1, as under complete randomization, but
their distributional properties are different. The probability that a
certain combination of the random variables takes on a specified value
depends on the values of u. For example, for a given constrained set

we may have that
\ '
p [6k.f=1'6kf =1] =1 while P[kav=l 6kf"‘=l] =0,
u u ° N

where u#u'#u'"' #u'"' and f#£f'. For this reason it appears very
difficult to determine the variance of the error sum of squares in general
under constrained randomization,

The notion of constrained randomization was developed to overcome
some of the undesirable effects .of systematic arrangements of the units,
Since a linear relationship of basal yields to unit number constitutes

perhaps the simplest example of this type, we will now consider this



situation in some detail. Because of origin and scale invariance of
analysis of variance procedures we will let the basal yield of each unit
equal the unit number.

The reason for examining the notion of constrained randomization is
to develop some understanding of the properties it induces with reference
to tests of significance, estimation, and sensitivity. It seems reasonable
to expect that the constrained set with the smallest variance of the error
sum of squares will be the most sensitive for detecting treatment
differences.

We now give two examples of constrained sets of plans along with the
distribution of their error sum of squares, where we assume that the
basal yields are equal to their respective unit numbers.

Let R=T=4 and N=5, Yates (1936) gave the R.B.I,B.D, plan

which leads to the constrained set of 5 plans given in Table 1,

TABLE 1

SET A OF PLANS AND THE DISTRIBUTION OF ITS
ERROR SUM OF SQUARES

Unit No.

PlanNo. | , 3 4 5 6 7 8 91011 12 13 14 15 16 E-5:5
1 a a a a b b b b c c c ¢c dd d d 20.0
2 a b c d a b c d a b c d a b ¢ d 320.0
3 a b c d b adc ¢c d a b d c b a 340,0
4 a b c dd c b ab adc c d a b 340,0
5 aboecdcdabdocbabadec 340.0

10



The error sum of squares for plan 5, for example, is
12472+ 122+ 142 - (1 +7+12+14)%/4
+22+8 +112+132-(2+8+11+13)%/4
+324524+102+16%2-(3+5+10+16)*/4
+42+6%+ 92 +152-(4+6+ 9+15)*/4
= 340,

For this constrained set

E(E.S.S8.) = 272
and V(E.S.S.) = 15,936 .
Under complete randomization

E(E,S.S.) = 272
and V(E.S.S.) = 2,339.20 .,

By permuting the rows and columns of the 16 x 16 square array for
the constrained set given in Table, we find the constrained set of plans

given in Table 2,

For this constrained set

E(E.S.S.) 272

and V(E.S.S.) 38.40.

11



TABLE 2

SET B OF PLANS AND THE DISTRIBUTION OF ITS
ERROR SUM OF SQUARES

Unit No.

PlanNo. | 5 3 4 5 6 7 8 9101112 13 14 15 16

1 a b b abacdc ddcdoc ayb 276
2 a a b b c c dd aa b b c c dd 260
3 a b cd abb adc b adc c d 276
4 a b c dd c d ¢c ¢ d a bbb a b a 276
5 a b a b cd ab c d c d a b c d 272

The large numerical value of the variance of the error sum of squares
for the constrained set of plans given in Table 1 was generated from a
4 x 4 completely orthogonalized Latin square. The above example is an

illustration of the following general theorem,

Theorem 3:

If the unit number is equal to the basal yield of that unit and if a
completely orthogonalized Latin square of side R exists, then in the
class of all constrained sets with parameters R =T and N =R + 1, the
maximum value of the variance of the error sum of squares is attained
by every constrained set corresponding to any completely orthogonalized

Latin square of side R,

12



IV. POWER OF THE RANDOMIZATION TEST FOR
CONSTRAINED RANDOMIZATION

A. Introduction

The common use of either the F distribution or the beta distri-
bution, in connection with tests associated with the analysis of variance
table, has its origin in the normality assumption about the distribution
of the basic errors occurring in the models appropriate to the mathe-
matical representation of basic experimental situations. Consideration
of experiments where constrained randomization is useful, however,
shows that the experimental unit errors follow a distribution distinctly
non-normal.,

We can in general perform an exact test as follows. Compute the
value of the test criterion treatment sum of squares over total sum of
squares, denoted by Bl’ from the experiment as it was realized.
Assuming that the values observed in the experiment are values
characteristic of the experimental units proper, compute the values of
the test criterion treatment sum of squares over total sum of squares
for all potential realizations of the experiment. Arrange these computed
values in ascending order of magnitude. Then on the basis of a
significance level of say 5%, the null hypothesis of no treatment effect
will be rejected when B1 is among the upper 5% of the computed
values in the a.scending‘a.rray. The above test procedure is exact in the |
sense that its significance level has the specified size. It is evident,
however, that for the larger experiments, without using electronic
computer methods, the computations required for performing the test

are prohibitively laborious.

13



The performance of the experiment will yield a set of RT observed
yields and corresponding to these observed yields the value
B1 = treatment sum of squares over total sum of squares can be
computed. Under the assumption that there are no treatment effects, any
of the other N assignments of the T treatments to the RT experi-
mental units will result in a set of RT observed yields. There are N
such sets of RT observed yields and for each set the value of B can be
computed. The N values so computed can now be arranged in an array
of ascending magnitudes. The position of Bl in this array then tells us
the levels of significance for which the null hypothesis of no difference
among the T treatments would be rejected. In practice the actual
values of the test criterion treatment sum of squares over total sum of
squares need not be computed because there is a one-to-one corre-

spondence between the magnitudes of B and the magnitudes of

MM
=
[ Y]

where Tj is the sum of the observed yields which receive treatment j,
so that an equivalent simplified test procedure can be specified.

To illustrate the idea, suppose that we used the constrained design
for 3 treatments on 6 units given on page 7. That is, we choose at

random one of the following 5 plans:

14



Plan Unit No.
No. 1 2 3 4 5 6
I a a b c b c
I a b a c c c
I c b b a c c
v a b c b a c
v a b c c b a

We would of course, assign the letters a, b and c to the 3 treatments

at random. Now suppose we drew plan IV, and obtained the following

observations:
Unit No.
1 2 3 4 5 6
Treatment a b c b a c

Response 15 18 21 20 19 24 .,

To perform the randomization test we superimpose successively plans
1, II, 1II, IV, and V on the observations, and analyze the resulting

configurations, We obtain the following numbers:

15



Total
S.S5q. Sum of
Plan | around [Correction | (treatment | Treatment | Error
No. mean factor total)? S.Sqs. S.Sqs. F
I 45,5 2281.5 2312.5 31,0 14,5 3.21
I 45,5 | 2281.5 2290.5 9.0 36.5 0.37
m 45.5 2281,5 2297.5 16,0 29.5 0. 81
v 45,5 2281.5 2322.5 41.0 4.5 113,67
v 45,5 | 2281.5 2285.5 4,0 41,5 . 0,14

For instance if we superimpose plan I on the observations, we obtain the

configuration:

The total sum of squares is

152 + 182 + 21% + 20% + 192 + 242

Treatment a

Response 15

The correction factor is

(15 + 18 + 21 + 20 + 19 + 24)*
6

Unit No,
2 3 4 5 6
a b c b c
18 21 20 19 24

{15 +18 + 21 +20 + 19 + 24)% _
z -

2, 281,

5.

The sum of squares of treatment totals is

2 2 2
‘15;18) , @l ; 190 (20;24) = 2,312.5.

The treatment sum of squares is

2,312,5 - 2,281,5 =
The error sum of squares is

45,5 - 31,0 =

14,5,

31,0,

16

45,5,




The value for F is

31.0 . 14.5 _
(30) + (%) -

To make the randomization F test we note that the observed value of
F was 13,67 and that other possible plans we could have obtained
would give F values of 3,21, 0.37, 0,81, and 0,14, Therefore the
observed F value is equalled or exceeded in the totality of 5 plans
only once, and the significance level to be attached to the observed
differences is % or 20%. Because the total sum of squares is constant,
there is a monotone relationship between F and the treatment sum of
squares, and because the correction factor is constant, one need consider
only the sum of squares of treatment totals in deciding the randomization
significance of the observed differences. Note in passing that the
assumption of normality would allow us to use the F table with 2 and
3 degrees of freedom leading to a significance level between 10% and
5% for the observed differences. In general the randomization test
leads to a discrete set of possible significance levels, in contrast to a
test based on an assumed continuous distribution,

The value of the power function for a particular vector of values,

6, = (61, 62, coes 6T) of the treatments and a particular vector of values,

0
Po = (p 12Ppreees pn), n = RT, of the units may be computed as follows.
Each arrangement of the T treatments on the RT experimental units

would yield a set of RT observed yields, Y;o for i=1,2,...,RT. On

the basis of that particular set of observed yields, y;» We may perform

the test of the hypothesis of no treatment differences as described in the
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paragraph above, and hence record whether the hypothesis would be
accepted or rejected for the set under consideration. Altogether N such
sets of RT observed yields can be generated and for each set a decision
as to the acceptance or rejection of the hypothesis can be made. The
proportion of rejections of the null hypothesis at a particular

significance level, constitutes the value of the power function of the test

when the vector of treatment values is 60 .

B. Empirical Results

Empirical results for the power of the randomization test under
constrained randomization have been obtained for a number of different
sets of values for the parameters R, T, and N, For each set of values
R, T, and N, we consider three different constrained sets characterized
by a small, an average, and a large value of the variance of the error
sum of squares under linear basal yields, The different sets are denoted
by L, M, and H respectively. For each such constrained set, L, M,
and H, three different types of basal yields, x;, are considered. We

will refer to these types as

(1) Linear - these are nearly linearly distributed random variables

with variance equal to K,

{(2) Random - these are normally and independently distributed
random variables with a mean of zero and a variance

equal to K, and

{(3) Semi-Random - these are distributed as the sum of a linearly

distributed random variable with variance equal to

18



%K and a normally and independently distributed
random variable with a mean of zero and a variance

equal to -;-K.

The vectors of treatment effects are determined by the following

relationships:

and

t1=a’ t2=a+b, t3=a+2b,....t =a+(T-l)b,

T

where a is arbitrary and b is chosen so that the ratio of the true
standard deviation among the treatment effects to VK/R , which is the

standard deviation of a treatment mean, equals A, where A takes on

the values
1 1 1 1 1 2 1 2
0, _1-2-’ '6': '4'0 '3‘: E: 3: 1, 1‘3‘5 13, 2, 3, 4, 5.

We now give some representative tables of the power function of the

randomization test for the constrained sets considered,
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C. Discussion of the Empirical Results

Consider the three different constrained sets with the same values
for the parameters R, T, and N, for which the planued distinguishing
feature consists in their different values far the variance of the error
sum of squares, Under nearly linear basal yields the power of the
randomization test for the constrained set with a low variance of the
error sum of squares is nearly always greater than or equal to that for
either of the constrained sets with an average or a high variance of the
error sum of squares. Similar differences in the power occur for the
constrained sets with average and high variances of the error sum of
squares. The above is also true, but somewhat less pronounced, for the
semi-randomly distributed basal yields. Also, when the basal yields
form a sample from a normal distribution, the differences between the
power functions of the three different constrained sets are small. As an
example of these facts we refer to Table 5. When A= 131- and the basal
yields are nearly linear the power is 82.50%, 54.16%, and 20,00% for
the constrained sets L, M, and H, respectively. With the same
situation for random basal yields the powers are 87.50%, 81,66%, and
85.83% and 76.66%, 74.16%, and 71.,66% for semi-random basal
yields. It should be noted that the variances of the error sum of squares
for all three plans with random and semi-random basal yields are all
small relative to the two large values of the variance of the error sum of
squares under nearly linear basal yields.

One would expect that a constrained set, for which the variance of

the error sum of squares is nearly equal to the variance of the error

26



sum of squares under complete randomization, has a power function
nearly equal to that holding under complete randomization. Thus, with
the above assumption the tables indicate that with nearly linear basal
yields a constrained set, for which the variance of the error sum of
squares is less than that under complete randomization, has greater
power than that holding under complete randomization. Table 7 shows
that increases in A are not always accompanied by corresponding
increases in the power. This last fact does not correspond to the normal
theory result where the power function of the analysis of variance test is

a strictly increasing function of A.
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